lightkurve.correctors.DesignMatrixCollection#
- class lightkurve.correctors.DesignMatrixCollection(matrices)[source]#
Object which stores multiple design matrices.
DesignMatrixCollection objects are useful when users want to regress against multiple different systematics, but still keep the different systematics distinct.
Examples
>>> from lightkurve.correctors.designmatrix import create_spline_matrix, DesignMatrix, DesignMatrixCollection >>> dm1 = create_spline_matrix(np.arange(100), n_knots=5, name='spline') >>> dm2 = DesignMatrix(np.arange(100), name='slope') >>> dmc = DesignMatrixCollection([dm1, dm2]) >>> dmc DesignMatrixCollection: spline DesignMatrix (100, 5) slope DesignMatrix (100, 1) >>> dmc.matrices [spline DesignMatrix (100, 5), slope DesignMatrix (100, 1)]
Methods
__init__
(matrices)plot
([ax])Visualize the design matrix values as an image.
plot_priors
([ax])Visualize the
prior_mu
andprior_sigma
attributes.split
(row_indices)Returns a new
DesignMatrixCollection
with regressors split into multiple columns.standardize
()Returns a new
DesignMatrixCollection
in which all the matrices have been standardized using theDesignMatrix.standardize
method.to_designmatrix
([name])Flatten a
DesignMatrixCollection
into aDesignMatrix
.validate
()Attributes
columns
List of column names.
prior_mu
Coefficient prior means.
prior_sigma
Coefficient prior standard deviations.
values
2D numpy array containing the matrix values.