lightkurve.correctors.corrector.Corrector.correct#
- abstract Corrector.correct(cadence_mask: Optional[numpy.array] = None, optimize: bool = False) lightkurve.lightcurve.LightCurve[source]#
- Returns a - LightCurvefrom which systematic noise has been removed.- This method shall: - accept meaningful parameters that can be used to tune the correction, including: - optimize: should an optimizer be used to tune the parameters?
- cadence_mask: flags cadences to be used to fit the noise model.
 
- store all parameters as object attributes (e.g. - self.optimize,- self.cadence_mask);
- store helpful diagnostic information as object attributes; 
- store the result in the - self.corrected_lcattribute;
- return - self.corrected_lc.